

edX Automated Communication Engine (A.C.E.)

The Automated Communication Engine, ACE for short, is a Django app for
messaging learners on the edX platform. This app can be installed in any Open
edX project, but has only been tested with edx-platform. Email delivery
(via Sailthru or Django email) is the only current delivery channel. In the
future we may add support for other delivery channels such as push
notifications.

	Getting Started
	Install dependencies

	Configure delivery channels

	Create a message

	Transactional messages

	Send a message

	Design
	Overview

	Goals/Constraints

	Architecture

	Decisions

	Testing

	API Documentation
	Basic Interface

	Sending Messages

	Delivery

	Exceptions

	Messages

	Monitoring

	Delivery Policy

	Message Presentation

	Message Recipients

	Serialization

	Utils

	Testing

	Internal

	Change Log
	Unreleased

	[1.5.0] - 2022-02-15

	[1.4.1] - 2021-12-06

	[1.4.0] - 2021-11-08

	[1.3.1] - 2021-08-17

	[1.3.0] - 2021-08-16

	[1.2.0] - 2021-07-16

	[1.1.1] - 2021-07-09

	[1.1.0] - 2021-03-26

	[1.0.1] - 2021-03-15

	[1.0.0] - 2021-03-11

	[0.1.18] - 2020-11-19

	[0.1.17] - 2020-10-19

	[0.1.16] - 2020-10-17

	[0.1.15] - 2020-03-11

	[0.1.14] - 2020-03-11

	[0.1.13] - 2019-12-06

	[0.1.12] - 2019-10-16

	[0.1.10] - 2018-11-01

	[0.1.9] - 2018-07-13

	[0.1.0] - 2017-08-08

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

If you have not already done so, create/activate a virtualenv [https://virtualenvwrapper.readthedocs.org/en/latest/]. Unless otherwise stated, assume all terminal code
below is executed within the virtualenv.

Install dependencies

Dependencies can be installed via the command below.

$ make requirements

Configure delivery channels

Certain delivery channels may require additional configuration
before they will function correctly.

SailthruEmailChannel Settings

ACE_CHANNEL_SAILTHRU_DEBUG = False
ACE_CHANNEL_SAILTHRU_TEMPLATE_NAME = "Some template name"
ACE_CHANNEL_SAILTHRU_API_KEY = "1234567890"
ACE_CHANNEL_SAILTHRU_API_SECRET = "this is secret"

DjangoEmailChannel Settings

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'localhost'
DEFAULT_FROM_EMAIL = 'hello@example.org'

ACE_CHANNEL_DEFAULT_EMAIL = 'sailthru_email'
ACE_CHANNEL_TRANSACTIONAL_EMAIL = 'django_email'

ACE_ENABLED_CHANNELS = [
 'sailthru_email',
 'django_email',
]

Create a message

Each message sent with ACE is represented by an instance of Message.
These can be created manually, or can be created by calling MessageType.personalize()
on a MessageType instance. The name and package of the MessageType
determines what templates will be used when the Message is rendered for delivery.

For example, the class

myapp/messages.py

class CustomMessage(edx_ace.message.MessageType):
 pass

would use the following templates when rendered for email delivery:

myapp/edx_ace/custommessage/email/from_name.txt
myapp/edx_ace/custommessage/email/subject.txt
myapp/edx_ace/custommessage/email/body.html
myapp/edx_ace/custommessage/email/head.html
myapp/edx_ace/custommessage/email/body.txt

These all follow the format {app_label}/edx_ace/{message_name}/{renderer}/{attribute},
where the app_label and message_name are defined by the MessageType (or
the manually created Message), and renderer and attribute come from
the renderer being used by the specific delivery channel. The templates will be retrieved
using standard Django template resolution mechanisms.

The specific templates needed for existing renderers are listed in edx_ace.renderers.

Transactional messages

Transactional messages such as password reset should be marked as options.transactional = True,
to ensure that it won’t be subject to marketing messages opt-out policies.
While not required, transactional messages are recommended to use the django_email channel which supports
a custom options.from_address email. For example:

myapp/messages.py

class PurchaseOrderComplete(edx_ace.message.MessageType):
 def __init__(self, *args, **kwargs):
 super(PurchaseOrderComplete, self).__init__(*args, **kwargs)

 self.options['transactional'] = True
 self.options['from_address'] = settings.ECOMMERCE_FROM_EMAIL

Send a message

The simplest way to send a message using ACE is to just create it, and call edx_ace.ace.send().

from edx_ace import ace
from edx_ace.messages import Message

msg = Message(
 name="test_message",
 app_label="my_app",
 recipient=Recipient(lms_user_id='123456', email='a_user@example.com'),
 language='en',
 context={
 'stuff': 'to personalize the message',
 }
)
ace.send(msg)

The name and app_label attributes are required in order for ACE to look
up the correct templates in the Django environment.

For messages being sent from multiple places in the code, it can be simpler to
define a MessageType first, and then MessageType.personalize() it.

from edx_ace import ace
from edx_ace.messages import Message

class TestMessage(MessageType):
 APP_LABEL = "my_app" # Optional
 NAME = "test_message" # Optional

msg_type = TestMessage(
 context={
 'generic_stuff': 'that is applicable to all recipients'
 }
)

for recipient in recipients:
 msg = msg_type.personalize(
 recipient=recipient,
 language='en',
 context={
 'stuff': 'to personalize the message',
 }
)
 ace.send(msg)

Design

Overview

The Automated Communications Engine (A.C.E.) is a framework for automatically sending messages to users. It is
intended to support the identification of recipients and personalization of messages for each recipient.

The intent is for ACE to provide the application-specific logic that is easiest to manage in an environment that is
close to the source-of-truth data and outsource the generic functionality that is complex but not a core competency
of an education platform (like sending email). This line, of course, is a bit blurry, so we reserve the right in the
future to push more functionality into the third-party provider as our needs evolve. We may even choose to delegate
all of this functionality to a third-party at some point in the future.

Given the complexity of finding the right people to send the right message to with all of the needed personalization, we
try to handle that problem as closely to the source-of-truth as possible instead of trying to manage a complex
integration with a third-party system.

The following future requirements might encourage us to shift the line between custom and off-the-shelf in the future:

	Preference management across all channels

	Message analytics (open rates, click through rates etc)

	Frequency management and prioritization of messages across all channels and products

	Cost

	Personalized, intelligent timing of delivery (likely driven by a machine learning model)

	Digests and other summaries

Goals/Constraints

ACE was designed with the following goals in mind:

	Support edX base requirements (internationalization, accessibility, theming)

	Allow future extension of adding new delivery mechanisms

	Allow future extension of message delivery policy

The first goal we supported by choosing to use Django as the templating mechanism,
and by making ACE a library that could be used by many Django applications, rather
than a separate service that was called by many Django applications.

The second and third goal guided where we added extension points into the ACE
architecture.

Architecture

[image: _images/architecture.png]
A RuntimeEnvironment is a Django application that has included edx_ace as a djangoapp. ACE is running in the same
process as this application.

The RuntimeEnvironment provides:

	Translation files (*.po)

	Settings - used to configure ACE

	Template resolution strategies

	Batching and resource management (queueing etc)

A MessageType represents a type of communication we might want to send to the learner. Our
various applications will want to define different MessageTypes. Examples might
include RecurringReminder, OrderConfirmation, DeadlineReminder etc. It is user agnostic, however,
it can be used as a factory for Message objects by “personalizing” the generic message type
for a particular user.

A Channel is a communication channel with the learner. Examples include Email, SMS, Push
Notifications, In-Browser Notifications etc.

An Application often wants to define several MessageTypes and knows when to
send them to who. It is expected to be implemented as a djangoapp included in the same RuntimeEnvironment as ACE.

The Application is responsible for defining Django templates for each dynamic field required for each
Channel for each MessageType. For an email, for example, this
includes the subject, from_name, body_html etc.

Django templates provide a lot of functionality we want out of the box, including:

	Interpolation of variables

	Control structures (conditionals, loops etc)

	Translations

	White label site-specific overrides

	Inheritance - this is very useful for emails since they often share a lot of HTML

	Static asset management - managing images and CDNs

The Application can define MessageType and use them to create
Messages, or it can simply create the Messages
directly.

A Recipient defines the contact information for the person who is intended to receive the
message. It must contain all of the needed information for each enabled Channel. For example,
this might include the user’s email address and/or notification key (for mobile push notifications).

The Application executes ace.send(message) for each message it wants to send. This
triggers the ACE message delivery pipeline.

It calls a series of registered Policy objects in sequence to determine if the user should
actually receive the message and over which channels. This is where user preferences are enforced. These are
dynamically loaded using standard python plugin tools.

The Presentation tools render the message templates using the Django template engine.

Each Channel has exactly one implementation that is called in sequence to transmit the
message to the user over the appropriate channel if and only if the policy has allowed communication over that channel.
An example is the edx_ace.channel.sailthru.SailthruEmailChannel.

Decisions

	Braze Event Delivery
	Status

	Context

	Decision

	Rejection

Allow for In-Braze Message Templating

Status

Rejected

Context

With the existing ACE channels, Marketing (edX’s marketing team) can’t directly manage the
content of the emails being sent. In order to enhance their ability to improve edX’s
marketing content, we (edX Engineering) want to expose the contents and performance of
the marketing flows that are powered by ACE to that team.

When exposing those data to Marketing, and allowing them to make changes
to improve the content, we would like to make sure that they aren’t blocked by the engineering
organization. However, we also need to be mindful of existing open-source uses of ACE as
well, and that we don’t lose the ability to maintain those uses.

While looking at Braze functionality, it was determined that there isn’t a good way for us
to schedule campaigns with flexible dates based on single events. This is a feature we were
looking to use to allow Marketing to handle dynamic pacing email (or schedule-based
campaigns). However, because of current restrictions in the Braze platform, this is likely
not possible.

Decision

We will use existing ACE emails to trigger events in Braze, and then allow Marketing
to send campaigns based on those ACE email events. These events will be sent whenever
an email is sent by the Braze channel in ACE, directly using the Braze event API
(https://www.braze.com/docs/api/endpoints/user_data/post_user_track/). They will include
all the properties currently used to template into the ACE Django templates, and will be
named based on the name of the ACE email being sent.

We will also add the ability to disable specific Braze-channel emails from being sent via
the API, so that we can control which emails will be sent via event trigger Braze campaigns,
and which will be sent via the direct email API.

Rejection

As of March 2021, Braze event properties cannot contain nested data. As a result, we cannot
emit events that parallel the current message context attributes into Braze effectively. Instead,
we will emit events into Segment for dynamic pacing outside of ACE entirely.

Testing

edx-ace has an assortment of test cases and code quality
checks to catch potential problems during development. To run them all in the
version of Python you chose for your virtualenv:

$ make validate

To run just the unit tests:

$ make test

To run just the unit tests and check diff coverage

$ make diff_cover

To run just the code quality checks:

$ make quality

To run the unit tests under every supported Python version and the code
quality checks:

$ make test-all

To generate and open an HTML report of how much of the code is covered by
test cases:

$ make coverage

API Documentation

Contents

	API Documentation

	Basic Interface

	Sending Messages

	Delivery

	edx_ace.channel.sailthru

	edx_ace.channel.django_email

	Exceptions

	Messages

	Monitoring

	Delivery Policy

	Message Presentation

	Message Recipients

	Serialization

	Utils

	edx_ace.utils

	edx_ace.utils.date

	edx_ace.utils.once

	edx_ace.utils.plugins

	Testing

	edx_ace.test_utils

	Internal

	Delivery

Basic Interface

ACE (Automated Communications Engine) is a framework for automatically
sending messages to users.

edx_ace exports the typical set of functions and classes needed to use
ACE.

	
class edx_ace.Channel

	Bases: object [https://docs.python.org/3.5/library/functions.html#object]

Channels deliver messages to users that have already passed through the presentation and policy steps.

Examples include email messages, push notifications, or in-browser messages. Implementations of this abstract class
should not require any parameters be passed into their constructor since they are instantiated.

channel_type must be a ChannelType.

	
channel_type = None

	

	
abstract deliver(message, rendered_message)

	Transmit a rendered message to a recipient.

	Parameters:

	
	message (Message) – The message to transmit.

	rendered_message (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – The rendered content of the message that has been personalized for this particular
recipient.

	
classmethod enabled()

	Validate settings to determine whether this channel can be enabled.

	
overrides_delivery_for_message(message)

	Returns true if this channel specifically wants to handle this message, outside normal channel delivery rules.

For example, say you use a django transactional email channel, but with a default channel of braze.
Then if the braze channel is configured with a campaign for a certain transactional message id specifically, it
will claim that message via this method and end up delivering it via braze instead of the normal transactional
django channel.

	
class edx_ace.ChannelType(value)

	Bases: Enum [https://docs.python.org/3.5/library/enum.html#enum.Enum]

All supported communication channels.

	
EMAIL = 'email'

	

	
PUSH = 'push'

	

	
class edx_ace.Message(app_label, name, recipient, expiration_time=None, context=NOTHING, send_uuid=None, options=NOTHING, language=None, log_level=None)

	Bases: MessageAttributeSerializationMixin

A Message is the core piece of data that is passed into ACE.
It captures the message, recipient, and all context needed to render
the message for delivery.

	Parameters:

	
	app_label (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The name of the Django app that is sending
this message. Used to look up the appropriate template
during rendering. Required.

	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The name of this type of message. Used to look up
the appropriate template during rendering. Required.

	recipient (Recipient) – The intended recipient of the
message. Optional.

	expiration_time (datetime [https://docs.python.org/3.5/library/datetime.html#datetime.datetime]) – The date and time
at which this message expires. After this time, the message
should not be delivered. Optional.

	context (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – A dictionary to be supplied to the template at
render time as the context.

	send_uuid (uuid.UUID [https://docs.python.org/3.5/library/uuid.html#uuid.UUID]) – The uuid.UUID [https://docs.python.org/3.5/library/uuid.html#uuid.UUID] assigned
to this bulk-send of many messages.

	language (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The language the message should be rendered in.
Optional.

	
default_context_value()

	

	
default_options_value()

	

	
generate_uuid()

	

	
get_message_specific_logger(logger)

	
	Parameters:

	logger (logging.Logger [https://docs.python.org/3.5/library/logging.html#logging.Logger]) – The logger to be adapted.

Returns: MessageLoggingAdapter that is specific to this message.

	
property log_id

	The identity of this message for logging.

	
report(key, value)

	

	
report_basics()

	

	
property unique_name

	A unique name for this message, used for logging and reporting.

Returns: str

	
class edx_ace.MessageType(context=NOTHING, expiration_time=None, app_label=NOTHING, name=NOTHING, options=NOTHING, log_level=None)

	Bases: MessageAttributeSerializationMixin

A class representing a type of Message. An instance of
a MessageType is used for each batch send of messages.

	Parameters:

	
	context (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – Context to be supplied to all messages sent in
this batch of messages.

	expiration_time (datetime.datetime [https://docs.python.org/3.5/library/datetime.html#datetime.datetime]) – The time at which
these messages expire.

	app_label (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – Override the Django app that is used to resolve
the template for rendering. Defaults to APP_LABEL or
to the app that the message type was defined in.

	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – Override the message name that is used to resolve
the template for rendering. Defaults to NAME or
to the name of the class.

	
APP_LABEL = None

	

	
NAME = None

	

	
default_app_label()

	Get default app Label.

	
default_context_value()

	

	
default_name()

	Return default class name.

	
default_options_value()

	

	
generate_uuid()

	

	
personalize(recipient, language, user_context)

	Personalize this MessageType to a specific recipient, in order to
send a specific message.

	Parameters:

	
	recipient (Recipient) – The intended recipient of the
message. Optional.

	language (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The language the message should be rendered in.
Optional.

	user_context (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – A dictionary containing recipient-specific
context to be supplied to the template at render time.

	Returns: A new Message that has been personalized to a
	specific recipient.

	
class edx_ace.Policy

	Bases: object [https://docs.python.org/3.5/library/functions.html#object]

A Policy allows an application to specify what Channel any specific
Message shouldn’t be sent over. Policies are one of the primary
extension mechanisms for ACE, and are registered using the entrypoint openedx.ace.policy.

	
abstract check(message)

	Validate the supplied Message against a specific
delivery policy.

	Parameters:

	message (Message) – The message to run the policy against.

	Returns: PolicyResult
	A PolicyResult that represents what channels the message should not be delivered over.

	
classmethod enabled()

	

	
class edx_ace.PolicyResult(deny=NOTHING)

	Bases: object [https://docs.python.org/3.5/library/functions.html#object]

	Parameters:

	deny (set [https://docs.python.org/3.5/library/stdtypes.html#set]) – A set of ChannelType values that should be excluded
when sending a message.

	
check_set_of_channel_types(attribute, set_value)

	

	
class edx_ace.Recipient(lms_user_id, email_address=None)

	Bases: MessageAttributeSerializationMixin

The target for a message.

	Parameters:

	
	lms_user_id (int [https://docs.python.org/3.5/library/functions.html#int]) – The LMS user ID of the intended recipient.

	email_address (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The email address of the intended recipient. Optional.

	
class edx_ace.RecipientResolver

	Bases: object [https://docs.python.org/3.5/library/functions.html#object]

This class represents a pattern for separating the content of a message
(the MessageType) from the selection of recipients (the RecipientResolver).

	
abstract send(msg_type, *args, **kwargs)

	send() a Message personalized from msg_type to all
recipients selected by this RecipientResolver.

	Parameters:

	msg_type (MessageType) – An instantiated MessageType
that describes the message batch to send.

	
edx_ace.send(msg)

	Send a message to a recipient.

Calling this method will result in an attempt being made to deliver the provided message to the recipient. Depending
on the configured policies, it may be transmitted to them over one or more channels (email, sms, push etc).

The message must have valid values for all required fields in order for it to be sent. Different channels have
different requirements, so care must be taken to ensure that all of the needed information is present in the message
before calling ace.send().

	Parameters:

	msg (Message) – The message to send.

Sending Messages

The main entry point for sending messages with ACE.

Usage:

from edx_ace import ace
from edx_ace.messages import Message

msg = Message(
 name="test_message",
 app_label="my_app",
 recipient=Recipient(lms_user_id='123456', email='a_user@example.com'),
 language='en',
 context={
 'stuff': 'to personalize the message',
 }
)
ace.send(msg)

	
edx_ace.ace.send(msg)

	Send a message to a recipient.

Calling this method will result in an attempt being made to deliver the provided message to the recipient. Depending
on the configured policies, it may be transmitted to them over one or more channels (email, sms, push etc).

The message must have valid values for all required fields in order for it to be sent. Different channels have
different requirements, so care must be taken to ensure that all of the needed information is present in the message
before calling ace.send().

	Parameters:

	msg (Message) – The message to send.

Delivery

edx_ace.channel exposes the ACE extension point needed
to add new delivery Channel instances to an ACE application.

Developers wanting to add a new deliver channel should subclass Channel,
and then add an entry to the openedx.ace.channel entrypoint in their setup.py.

	
class edx_ace.channel.Channel

	Bases: object [https://docs.python.org/3.5/library/functions.html#object]

Channels deliver messages to users that have already passed through the presentation and policy steps.

Examples include email messages, push notifications, or in-browser messages. Implementations of this abstract class
should not require any parameters be passed into their constructor since they are instantiated.

channel_type must be a ChannelType.

	
channel_type = None

	

	
abstract deliver(message, rendered_message)

	Transmit a rendered message to a recipient.

	Parameters:

	
	message (Message) – The message to transmit.

	rendered_message (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – The rendered content of the message that has been personalized for this particular
recipient.

	
classmethod enabled()

	Validate settings to determine whether this channel can be enabled.

	
overrides_delivery_for_message(message)

	Returns true if this channel specifically wants to handle this message, outside normal channel delivery rules.

For example, say you use a django transactional email channel, but with a default channel of braze.
Then if the braze channel is configured with a campaign for a certain transactional message id specifically, it
will claim that message via this method and end up delivering it via braze instead of the normal transactional
django channel.

	
class edx_ace.channel.ChannelMap(channels_list)

	Bases: object [https://docs.python.org/3.5/library/functions.html#object]

A class that represents a channel map, usually as described in Django settings and setup.py files.

	
get_channel_by_name(channel_type, channel_name)

	Gets a registered a channel by its name and type.

	Raises:

	KeyError [https://docs.python.org/3.5/library/exceptions.html#KeyError] – If either of the channel or its type are not registered.

	Returns:

	The channel object.

	Return type:

	Channel

	
get_default_channel(channel_type)

	Returns the first registered channel by type.

	Raises:

	UnsupportedChannelError – If there’s no channel that matched the request.

	Parameters:

	channel_type (ChannelType) – The channel type.

	
register_channel(channel, channel_name)

	Registers a channel in the channel map.

	Parameters:

	
	channel (Channel) – The channel to register.

	channel_name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The channel name, as stated in the setup.py file.

	
class edx_ace.channel.ChannelType(value)

	Bases: Enum [https://docs.python.org/3.5/library/enum.html#enum.Enum]

All supported communication channels.

	
EMAIL = 'email'

	

	
PUSH = 'push'

	

	
edx_ace.channel.channels()

	Gathers all available channels.

Note that this function loads all available channels from entry points. It expects the Django setting
ACE_ENABLED_CHANNELS to be a list of plugin names that should be enabled. Only one plugin per channel type
should appear in that list.

	Raises:

	ValueError [https://docs.python.org/3.5/library/exceptions.html#ValueError] – If multiple plugins are enabled for the same channel type.

	Returns:

	A mapping of channel types to instances of channel objects that can be used to deliver messages.

	Return type:

	ChannelMap

	
edx_ace.channel.get_channel_for_message(channel_type, message)

	Based on available channels() returns a single channels for a message.

	Raises:

	UnsupportedChannelError – If there’s no channel matches the request.

	Returns:

	The selected channel object.

	Return type:

	Channel

edx_ace.channel.sailthru

edx_ace.channel.sailthru implements a SailThru-based email delivery
channel for ACE.

	
class edx_ace.channel.sailthru.RecoverableErrorCodes(value)

	Bases: IntEnum [https://docs.python.org/3.5/library/enum.html#enum.IntEnum]

These error codes [https://getstarted.sailthru.com/developers/api-basics/responses/] are present in responses to requests that can (and should) be retried after waiting for a bit.

	
INTERNAL_ERROR = 9

	Something’s gone wrong on Sailthru’s end. Your request was probably not saved - try waiting a moment and trying
again.

	
RATE_LIMIT = 43

	You have exceeded the limit of requests per minute for the
given type (GET or POST) and endpoint. For limit details, see the Rate Limiting section on the API Technical Details
page.

	Type:

	Too many [type [https://docs.python.org/3.5/library/functions.html#type]] requests this minute to /[endpoint] API

	
class edx_ace.channel.sailthru.ResponseHeaders(value)

	Bases: Enum [https://docs.python.org/3.5/library/enum.html#enum.Enum]

These are special headers [https://getstarted.sailthru.com/developers/api-basics/technical/#HTTP_Response_Headers] returned in responses from the Sailthru REST API.

	
RATE_LIMIT_REMAINING = 'X-Rate-Limit-Remaining'

	

	
RATE_LIMIT_RESET = 'X-Rate-Limit-Reset'

	

	
class edx_ace.channel.sailthru.SailthruEmailChannel

	Bases: Channel

An email channel for delivering messages to users using Sailthru.

This channel makes use of the Sailthru REST API to send messages. It is designed for “at most once” delivery of
messages. It will make a reasonable attempt to deliver the message and give up if it can’t. It also only confirms
that Sailthru has received the request to send the email, it doesn’t actually confirm that it made it to the
recipient.

The integration with Sailthru requires several Django settings to be defined.

Example

Sample settings:

.. settings_start
ACE_CHANNEL_SAILTHRU_DEBUG = False
ACE_CHANNEL_SAILTHRU_TEMPLATE_NAME = "Some template name"
ACE_CHANNEL_SAILTHRU_API_KEY = "1234567890"
ACE_CHANNEL_SAILTHRU_API_SECRET = "this is secret"
.. settings_end

The named template in Sailthru should be minimal, most of the rendering happens within ACE. The “From Name” field
should be set to {{ace_template_from_name}}. The “Subject” field should be set to {{ace_template_subject}}.
The “Code” for the template should be:

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
 <head>
 {{ace_template_head_html}}
 </head>
 <body>
 {body_html = replace(ace_template_body_html, '{view_url}', view_url)}
 {body_html = replace(body_html, '{optout_confirm_url}', optout_confirm_url)}
 {body_html = replace(body_html, '{forward_url}', forward_url)}
 {body_html = replace(body_html, '{beacon_src}', beacon_src)}
 {body_html}
 {message_id()}

 </body>
</html>

	
property action_links

	This method is now deprecated in favor of get_action_links,
but will continue to work for the time being as it calls get_action_links under the hood.

	
channel_type = 'email'

	

	
deliver(message, rendered_message)

	Transmit a rendered message to a recipient.

	Parameters:

	
	message (Message) – The message to transmit.

	rendered_message (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – The rendered content of the message that has been personalized for this particular
recipient.

	
classmethod enabled()

	Returns: True iff all required settings are not empty and the Sailthru client library is installed.

	
get_action_links(**kwargs)

	Provides list of action links, called by templates directly.
Supported kwargs:

omit_unsubscribe_link (bool): Removes the unsubscribe link from the email.
DO NOT send emails with no unsubscribe link unless you are sure it will not violate the CANSPAM act.

	
property tracker_image_sources

	Provides list of trackers, called by templates directly

edx_ace.channel.django_email

edx_ace.channel.django_email implements a Django send_mail() email
delivery channel for ACE.

	
class edx_ace.channel.django_email.DjangoEmailChannel

	Bases: EmailChannelMixin, Channel

A send_mail() channel for edX ACE.

This is both useful for providing an alternative to Sailthru and to debug ACE mail by
inspecting django.core.mail.outbox.

Example

Sample settings:

.. settings_start
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'localhost'
DEFAULT_FROM_EMAIL = 'hello@example.org'

ACE_CHANNEL_DEFAULT_EMAIL = 'sailthru_email'
ACE_CHANNEL_TRANSACTIONAL_EMAIL = 'django_email'

ACE_ENABLED_CHANNELS = [
 'sailthru_email',
 'django_email',
]
.. settings_end

	
deliver(message, rendered_message)

	Transmit a rendered message to a recipient.

	Parameters:

	
	message (Message) – The message to transmit.

	rendered_message (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – The rendered content of the message that has been personalized for this particular
recipient.

	
classmethod enabled()

	Returns: True always!

Exceptions

edx_ace.errors exposes all exceptions that are specific to ACE.

	
exception edx_ace.errors.ChannelError

	Bases: Exception [https://docs.python.org/3.5/library/exceptions.html#Exception]

Indicates something went wrong in a delivery channel.

	
exception edx_ace.errors.FatalChannelDeliveryError

	Bases: ChannelError

A fatal error occurred during channel delivery. Do not retry.

	
exception edx_ace.errors.InvalidMessageError

	Bases: Exception [https://docs.python.org/3.5/library/exceptions.html#Exception]

Encountered a message that cannot be sent due to missing or inconsistent information.

	
exception edx_ace.errors.RecoverableChannelDeliveryError(message, next_attempt_time)

	Bases: ChannelError

An error occurred during channel delivery that is non-fatal. The caller should re-attempt at a later time.

	
exception edx_ace.errors.UnsupportedChannelError

	Bases: ChannelError

Raised when an attempt is made to process a message for an unsupported channel.

Messages

edx_ace.message contains the core Message and MessageType
classes, which allow specification of the content to be delivered by ACE.

	
class edx_ace.message.Message(app_label, name, recipient, expiration_time=None, context=NOTHING, send_uuid=None, options=NOTHING, language=None, log_level=None)

	Bases: MessageAttributeSerializationMixin

A Message is the core piece of data that is passed into ACE.
It captures the message, recipient, and all context needed to render
the message for delivery.

	Parameters:

	
	app_label (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The name of the Django app that is sending
this message. Used to look up the appropriate template
during rendering. Required.

	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The name of this type of message. Used to look up
the appropriate template during rendering. Required.

	recipient (Recipient) – The intended recipient of the
message. Optional.

	expiration_time (datetime [https://docs.python.org/3.5/library/datetime.html#datetime.datetime]) – The date and time
at which this message expires. After this time, the message
should not be delivered. Optional.

	context (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – A dictionary to be supplied to the template at
render time as the context.

	send_uuid (uuid.UUID [https://docs.python.org/3.5/library/uuid.html#uuid.UUID]) – The uuid.UUID [https://docs.python.org/3.5/library/uuid.html#uuid.UUID] assigned
to this bulk-send of many messages.

	language (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The language the message should be rendered in.
Optional.

	
default_context_value()

	

	
default_options_value()

	

	
generate_uuid()

	

	
get_message_specific_logger(logger)

	
	Parameters:

	logger (logging.Logger [https://docs.python.org/3.5/library/logging.html#logging.Logger]) – The logger to be adapted.

Returns: MessageLoggingAdapter that is specific to this message.

	
property log_id

	The identity of this message for logging.

	
report(key, value)

	

	
report_basics()

	

	
property unique_name

	A unique name for this message, used for logging and reporting.

Returns: str

	
class edx_ace.message.MessageLoggingAdapter(logger, extra)

	Bases: LoggerAdapter [https://docs.python.org/3.5/library/logging.html#logging.LoggerAdapter]

A logging.LoggingAdapter that prefixes log items with
a message log_id.ABCMeta

Expects a message key in its extra argument which should
contain the Message being logged for.

	
debug(msg, *args, **kwargs)

	Delegate a debug call to the underlying logger.

	
process(msg, kwargs)

	Process the logging message and keyword arguments passed in to
a logging call to insert contextual information. You can either
manipulate the message itself, the keyword args or both. Return
the message and kwargs modified (or not) to suit your needs.

Normally, you’ll only need to override this one method in a
LoggerAdapter subclass for your specific needs.

	
class edx_ace.message.MessageType(context=NOTHING, expiration_time=None, app_label=NOTHING, name=NOTHING, options=NOTHING, log_level=None)

	Bases: MessageAttributeSerializationMixin

A class representing a type of Message. An instance of
a MessageType is used for each batch send of messages.

	Parameters:

	
	context (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – Context to be supplied to all messages sent in
this batch of messages.

	expiration_time (datetime.datetime [https://docs.python.org/3.5/library/datetime.html#datetime.datetime]) – The time at which
these messages expire.

	app_label (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – Override the Django app that is used to resolve
the template for rendering. Defaults to APP_LABEL or
to the app that the message type was defined in.

	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – Override the message name that is used to resolve
the template for rendering. Defaults to NAME or
to the name of the class.

	
APP_LABEL = None

	

	
NAME = None

	

	
default_app_label()

	Get default app Label.

	
default_context_value()

	

	
default_name()

	Return default class name.

	
default_options_value()

	

	
generate_uuid()

	

	
personalize(recipient, language, user_context)

	Personalize this MessageType to a specific recipient, in order to
send a specific message.

	Parameters:

	
	recipient (Recipient) – The intended recipient of the
message. Optional.

	language (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The language the message should be rendered in.
Optional.

	user_context (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – A dictionary containing recipient-specific
context to be supplied to the template at render time.

	Returns: A new Message that has been personalized to a
	specific recipient.

Monitoring

edx_ace.monitoring exposes functions that are useful for reporting ACE
message delivery stats to monitoring services.

	
edx_ace.monitoring.report(key, value)

	

	
edx_ace.monitoring.report_to_newrelic(key, value)

	

Delivery Policy

edx_ace.policy contains all classes relating to message policies.

These policies manage which messages should be sent over which channels,
and are a point of pluggability in ACE.

	
class edx_ace.policy.Policy

	Bases: object [https://docs.python.org/3.5/library/functions.html#object]

A Policy allows an application to specify what Channel any specific
Message shouldn’t be sent over. Policies are one of the primary
extension mechanisms for ACE, and are registered using the entrypoint openedx.ace.policy.

	
abstract check(message)

	Validate the supplied Message against a specific
delivery policy.

	Parameters:

	message (Message) – The message to run the policy against.

	Returns: PolicyResult
	A PolicyResult that represents what channels the message should not be delivered over.

	
classmethod enabled()

	

	
class edx_ace.policy.PolicyResult(deny=NOTHING)

	Bases: object [https://docs.python.org/3.5/library/functions.html#object]

	Parameters:

	deny (set [https://docs.python.org/3.5/library/stdtypes.html#set]) – A set of ChannelType values that should be excluded
when sending a message.

	
check_set_of_channel_types(attribute, set_value)

	

	
edx_ace.policy.channels_for(message)

	
	Parameters:

	message (Message) – The message apply policies to.

	Returns: set
	A set of ChannelType values that are allowed by all policies
applied to the message.

	
edx_ace.policy.policies()

	

Message Presentation

edx_ace.renderers contains the classes used by ACE to
render messages for particular types of delivery channels. Each
ChannelType has a distinct subclass of AbstractRenderer
associated with it, which is used to render messages for all
Channel subclasses of that type.

	
class edx_ace.renderers.AbstractRenderer

	Bases: object [https://docs.python.org/3.5/library/functions.html#object]

Base class for message renderers.

A message renderer is responsible for taking one, or more, templates,
and context, and outputting a rendered message for a specific message
channel (e.g. email, SMS, push notification).

	
get_template_for_message(channel, message, filename)

	
	Parameters:

	
	message (Message) – The message being rendered.

	filename (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The basename of the template file to look up.

	Returns:

	The full template path to the template to render.

	
render(channel, message)

	Renders the given message.

	Parameters:

	
	channel (Channel) – The channel to render the message for.

	message – The message being rendered.

	
rendered_message_cls = None

	

	
class edx_ace.renderers.EmailRenderer

	Bases: AbstractRenderer

A renderer for ChannelType.EMAIL channels.

	
rendered_message_cls

	alias of RenderedEmail

	
class edx_ace.renderers.RenderedEmail(from_name, subject, body_html, head_html, body)

	Bases: object [https://docs.python.org/3.5/library/functions.html#object]

Encapsulates all values needed to send a Message
over an ChannelType.EMAIL.

An internal module that manages the presentation/rendering step of the
ACE pipeline.

	
edx_ace.presentation.render(channel, message)

	Returns the rendered content for the given channel and message.

Message Recipients

edx_ace.recipient contains Recipient, which captures all targeting
information needed to deliver a message to some user.

	
class edx_ace.recipient.Recipient(lms_user_id, email_address=None)

	Bases: MessageAttributeSerializationMixin

The target for a message.

	Parameters:

	
	lms_user_id (int [https://docs.python.org/3.5/library/functions.html#int]) – The LMS user ID of the intended recipient.

	email_address (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The email address of the intended recipient. Optional.

edx_ace.recipient_resolver contains the RecipientResolver, which facilitates
a design pattern that separates message content from recipient lists.

	
class edx_ace.recipient_resolver.RecipientResolver

	Bases: object [https://docs.python.org/3.5/library/functions.html#object]

This class represents a pattern for separating the content of a message
(the MessageType) from the selection of recipients (the RecipientResolver).

	
abstract send(msg_type, *args, **kwargs)

	send() a Message personalized from msg_type to all
recipients selected by this RecipientResolver.

	Parameters:

	msg_type (MessageType) – An instantiated MessageType
that describes the message batch to send.

Serialization

edx_ace.serialization contains MessageAttributeSerializationMixin,
which allows messages to be round-tripped through JSON, and
MessageEncoder, which actually performs the JSON encoding.

	
class edx_ace.serialization.MessageAttributeSerializationMixin

	Bases: object [https://docs.python.org/3.5/library/functions.html#object]

This mixin allows an object to be serialized to (and deserialized from)
a JSON string.

__str__() and from_string() function as inverses,
and are the primary point of interaction with this mixin by
outside clients.

to_json() is used to recursively convert the object to a
python dictionary that can then be encoded to a JSON string.

	
classmethod from_string(string_value)

	Decode a JSON-encoded string representation of this type.

	Parameters:

	string_value (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The JSON string to decode.

	Returns:

	An instance of this class.

	
to_json()

	
	Returns: dict
	a python dictionary containing all serializable fields
of this object, suitable for JSON-encoding.

	
class edx_ace.serialization.MessageEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Bases: JSONEncoder

Custom Message Encoder.

	
default(o)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

Utils

edx_ace.utils

edx_ace.utils.date

edx_ace.utils.date contains utility functions used for
serializing and deserializing dates. It is intended for internal ACE
use.

	
edx_ace.utils.date.deserialize(timestamp_iso8601_str)

	Deserialize a datetime object from an ISO8601 formatted string.

	Parameters:

	timestamp_iso8601_str (basestring) – A timestamp as an ISO8601 formatted string.

	Returns:

	A timezone-aware python datetime object.

	Return type:

	datetime

	
edx_ace.utils.date.get_current_time()

	The current time in the UTC timezone as a timezone-aware datetime object.

	
edx_ace.utils.date.serialize(timestamp_obj)

	Serialize a datetime object to an ISO8601 formatted string.

	Parameters:

	timestamp_obj (datetime) – The timestamp to serialize.

	Returns:

	A string representation of the timestamp in ISO8601 format.

	Return type:

	basestring

edx_ace.utils.once

edx_ace.utils.once provides the ability to create a module-level
function that caches it’s result after the first call (this can be used
for lazy-loading expensive computations).

	
edx_ace.utils.once.once(func)

	Decorates a function that will be called exactly once.

After the function is called once, its result is stored in memory and immediately returned to subsequent callers
instead of calling the decorated function again.

Examples

An incrementing value:

_counter = 0

@once
def get_counter():
 global _counter
 _counter += 1
 return _counter

def get_counter_updating():
 global _counter
 _counter += 1
 return _counter

print(get_counter()) # This will print "0"
print(get_counter_updating()) # This will print "1"
print(get_counter()) # This will also print "0"
print(get_counter_updating()) # This will print "2"

Lazy loading:

@once
def load_config():
 with open('config.json', 'r') as cfg_file:
 return json.load(cfg_file)

cfg = load_config() # This will do the relatively expensive operation to
 # read the file from disk.
cfg2 = load_config() # This call will not reload the file from disk, it
 # will use the value returned by the first invocation
 # of this function.

	Parameters:

	func (callable) – The function that should be called exactly once.

	Returns:

	The wrapped function.

	Return type:

	callable

edx_ace.utils.plugins

edx_ace.utils.plugins contains utility functions used
to make working with the ACE plugin system easier. These are intended
for internal use by ACE.

	
edx_ace.utils.plugins.check_plugin(extension, namespace, names=None)

	Check the extension to see if it’s enabled.

	Parameters:

	
	extension (stevedore.extension.Extension) – The extension to check.

	namespace (basestring) – The namespace that the extension was loaded from.

	names (list [https://docs.python.org/3.5/library/stdtypes.html#list]) – A whitelist of extensions that should be checked.

	Returns:

	Whether or not this extension is enabled and should be used.

	Return type:

	bool [https://docs.python.org/3.5/library/functions.html#bool]

	
edx_ace.utils.plugins.get_manager(namespace, names=None)

	Get the stevedore extension manager for this namespace.

	Parameters:

	
	namespace (basestring) – The entry point namespace to load plugins for.

	names (list [https://docs.python.org/3.5/library/stdtypes.html#list]) – A list of names to load. If this is None then all extension will be loaded from this
namespace.

	Returns:

	Extension manager with all extensions instantiated.

	Return type:

	stevedore.enabled.EnabledExtensionManager

	
edx_ace.utils.plugins.get_plugins(namespace, names=None)

	Get all extensions for this namespace and list of names.

	Parameters:

	
	namespace (basestring) – The entry point namespace to load plugins for.

	names (list [https://docs.python.org/3.5/library/stdtypes.html#list]) – A list of names to load. If this is None then all extension will be loaded from this
namespace.

	Returns:

	A list of extensions.

	Return type:

	list [https://docs.python.org/3.5/library/stdtypes.html#list]

Testing

edx_ace.test_utils

Test utilities.

Since pytest discourages putting __init__.py into test directory (i.e. making tests a package)
one cannot import from anywhere under tests folder. However, some utility classes/methods might be useful
in multiple test modules (i.e. factoryboy factories, base test classes). So this package is the place to put them.

	
class edx_ace.test_utils.StubPolicy(deny_value)

	Bases: Policy

Short term policy.

	
check(message)

	Validate the supplied Message against a specific
delivery policy.

	Parameters:

	message (Message) – The message to run the policy against.

	Returns: PolicyResult
	A PolicyResult that represents what channels the message should not be delivered over.

	
edx_ace.test_utils.patch_policies(test_case, policies)

	Set active policies for the duration of a test.

	Parameters:

	
	test_case (unittest.TestCase [https://docs.python.org/3.5/library/unittest.html#unittest.TestCase]) – The test case that is running

	policies – The set of active policies to return from edx_ace.policy.policies()

Internal

Delivery

Functions for delivering ACE messages.

This is an internal interface used by ace.send().

	
edx_ace.delivery.deliver(channel, rendered_message, message)

	Deliver a message via a particular channel.

	Parameters:

	
	channel (Channel) – The channel to deliver the message over.

	rendered_message (object [https://docs.python.org/3.5/library/functions.html#object]) – Each attribute of this object contains rendered content.

	message (Message) – The message that is being sent.

	Raises:

	.UnsupportedChannelError – If no channel of the requested channel type is available.

Change Log

Unreleased

[1.5.0] - 2022-02-15

	Added support for Django40

	Removed support for Django22, 30 and 31

[1.4.1] - 2021-12-06

	Adds in the ability to override frequency caps for Braze emails. Can be accessed via
Message options using the key override_frequency_capping. All emails containing the
transactional Message option will also override frequency caps.

[1.4.0] - 2021-11-08

	Deprecate the action_links property

	Add a get_action_links method and template tag to allow passing arguments to action links

[1.3.1] - 2021-08-17

	Adjust name handles_delivery_for_message to overrides_delivery_for_message

[1.3.0] - 2021-08-16

	New channel method handles_delivery_for_message for allowing a default channel
to claim a message, even if it would normally be delivered to the configured
transactional channel.

	Braze: Will handle any message defined in ACE_CHANNEL_BRAZE_CAMPAIGNS (using the
above new feature) to steal campaign messages from the transactional channel as
needed.

[1.2.0] - 2021-07-16

	Added support for django 3.2

[1.1.1] - 2021-07-09

	Removed upper constraint from Django

[1.1.0] - 2021-03-26

	Braze: Add ACE_CHANNEL_BRAZE_FROM_EMAIL setting to override the normal from address

	Sailthru: Remove Braze rollout waffle flag

[1.0.1] - 2021-03-15

	Braze: Add an unsubscribe action link

	Braze: Don’t ask Braze to inline css, as ACE templates already have inline css

[1.0.0] - 2021-03-11

	BREAKING: Recipient objects now take lms_user_id instead of username

	New braze_email backend, needing the following new configuration:

	ACE_CHANNEL_BRAZE_API_KEY

	ACE_CHANNEL_BRAZE_APP_ID

	ACE_CHANNEL_BRAZE_REST_ENDPOINT (like rest.iad-01.braze.com)

	ACE_CHANNEL_BRAZE_CAMPAIGNS (an optional dictionary of ACE message names to Braze campaign identifiers)

[0.1.18] - 2020-11-19

	Updated he travis-badge in README.rst to point to travis-ci.com

[0.1.17] - 2020-10-19

	Use IntEnum to avoid silent failure in value comparisons

[0.1.16] - 2020-10-17

	Fixed Enum usage for Python 3.8 to avoid TypeError when comparing values

[0.1.15] - 2020-03-11

	Added support for Python 3.8

	Removed support for Django 2.0 and 2.1

[0.1.14] - 2020-03-11

	Fix trivial warning from deprecated use of attr library.

[0.1.13] - 2019-12-06

	Django22 Support.

[0.1.12] - 2019-10-16

	Reply_to field added in emails.

[0.1.10] - 2018-11-01

	Django lazy text translations are handled properly.

[0.1.9] - 2018-07-13

	Updated delivery logging

[0.1.0] - 2017-08-08

Added

	First release on PyPI.

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 edx_ace	

 	
 	
 edx_ace.ace	

 	
 	
 edx_ace.channel	

 	
 	
 edx_ace.channel.django_email	

 	
 	
 edx_ace.channel.sailthru	

 	
 	
 edx_ace.delivery	

 	
 	
 edx_ace.errors	

 	
 	
 edx_ace.message	

 	
 	
 edx_ace.monitoring	

 	
 	
 edx_ace.policy	

 	
 	
 edx_ace.presentation	

 	
 	
 edx_ace.recipient	

 	
 	
 edx_ace.recipient_resolver	

 	
 	
 edx_ace.renderers	

 	
 	
 edx_ace.serialization	

 	
 	
 edx_ace.test_utils	

 	
 	
 edx_ace.utils	

 	
 	
 edx_ace.utils.date	

 	
 	
 edx_ace.utils.once	

 	
 	
 edx_ace.utils.plugins	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	AbstractRenderer (class in edx_ace.renderers)

 	action_links (edx_ace.channel.sailthru.SailthruEmailChannel property)

 	
 	APP_LABEL (edx_ace.message.MessageType attribute)

 	(edx_ace.MessageType attribute)

C

 	
 	Channel (class in edx_ace)

 	(class in edx_ace.channel)

 	channel_type (edx_ace.Channel attribute)

 	(edx_ace.channel.Channel attribute)

 	(edx_ace.channel.sailthru.SailthruEmailChannel attribute)

 	ChannelError

 	ChannelMap (class in edx_ace.channel)

 	channels() (in module edx_ace.channel)

 	
 	channels_for() (in module edx_ace.policy)

 	ChannelType (class in edx_ace)

 	(class in edx_ace.channel)

 	check() (edx_ace.Policy method)

 	(edx_ace.policy.Policy method)

 	(edx_ace.test_utils.StubPolicy method)

 	check_plugin() (in module edx_ace.utils.plugins)

 	check_set_of_channel_types() (edx_ace.policy.PolicyResult method)

 	(edx_ace.PolicyResult method)

D

 	
 	debug() (edx_ace.message.MessageLoggingAdapter method)

 	default() (edx_ace.serialization.MessageEncoder method)

 	default_app_label() (edx_ace.message.MessageType method)

 	(edx_ace.MessageType method)

 	default_context_value() (edx_ace.Message method)

 	(edx_ace.message.Message method)

 	(edx_ace.message.MessageType method)

 	(edx_ace.MessageType method)

 	default_name() (edx_ace.message.MessageType method)

 	(edx_ace.MessageType method)

 	
 	default_options_value() (edx_ace.Message method)

 	(edx_ace.message.Message method)

 	(edx_ace.message.MessageType method)

 	(edx_ace.MessageType method)

 	deliver() (edx_ace.Channel method)

 	(edx_ace.channel.Channel method)

 	(edx_ace.channel.django_email.DjangoEmailChannel method)

 	(edx_ace.channel.sailthru.SailthruEmailChannel method)

 	(in module edx_ace.delivery)

 	deserialize() (in module edx_ace.utils.date)

 	DjangoEmailChannel (class in edx_ace.channel.django_email)

E

 	
 	
 edx_ace

 	module

 	
 edx_ace.ace

 	module

 	
 edx_ace.channel

 	module

 	
 edx_ace.channel.django_email

 	module

 	
 edx_ace.channel.sailthru

 	module

 	
 edx_ace.delivery

 	module

 	
 edx_ace.errors

 	module

 	
 edx_ace.message

 	module

 	
 edx_ace.monitoring

 	module

 	
 edx_ace.policy

 	module

 	
 edx_ace.presentation

 	module

 	
 edx_ace.recipient

 	module

 	
 	
 edx_ace.recipient_resolver

 	module

 	
 edx_ace.renderers

 	module

 	
 edx_ace.serialization

 	module

 	
 edx_ace.test_utils

 	module

 	
 edx_ace.utils

 	module

 	
 edx_ace.utils.date

 	module

 	
 edx_ace.utils.once

 	module

 	
 edx_ace.utils.plugins

 	module

 	EMAIL (edx_ace.channel.ChannelType attribute)

 	(edx_ace.ChannelType attribute)

 	EmailRenderer (class in edx_ace.renderers)

 	enabled() (edx_ace.Channel class method)

 	(edx_ace.channel.Channel class method)

 	(edx_ace.channel.django_email.DjangoEmailChannel class method)

 	(edx_ace.channel.sailthru.SailthruEmailChannel class method)

 	(edx_ace.Policy class method)

 	(edx_ace.policy.Policy class method)

F

 	
 	FatalChannelDeliveryError

 	
 	from_string() (edx_ace.serialization.MessageAttributeSerializationMixin class method)

G

 	
 	generate_uuid() (edx_ace.Message method)

 	(edx_ace.message.Message method)

 	(edx_ace.message.MessageType method)

 	(edx_ace.MessageType method)

 	get_action_links() (edx_ace.channel.sailthru.SailthruEmailChannel method)

 	get_channel_by_name() (edx_ace.channel.ChannelMap method)

 	get_channel_for_message() (in module edx_ace.channel)

 	
 	get_current_time() (in module edx_ace.utils.date)

 	get_default_channel() (edx_ace.channel.ChannelMap method)

 	get_manager() (in module edx_ace.utils.plugins)

 	get_message_specific_logger() (edx_ace.Message method)

 	(edx_ace.message.Message method)

 	get_plugins() (in module edx_ace.utils.plugins)

 	get_template_for_message() (edx_ace.renderers.AbstractRenderer method)

I

 	
 	INTERNAL_ERROR (edx_ace.channel.sailthru.RecoverableErrorCodes attribute)

 	
 	InvalidMessageError

L

 	
 	log_id (edx_ace.Message property)

 	(edx_ace.message.Message property)

M

 	
 	Message (class in edx_ace)

 	(class in edx_ace.message)

 	MessageAttributeSerializationMixin (class in edx_ace.serialization)

 	MessageEncoder (class in edx_ace.serialization)

 	MessageLoggingAdapter (class in edx_ace.message)

 	MessageType (class in edx_ace)

 	(class in edx_ace.message)

 	
 module

 	edx_ace

 	edx_ace.ace

 	edx_ace.channel

 	edx_ace.channel.django_email

 	edx_ace.channel.sailthru

 	edx_ace.delivery

 	edx_ace.errors

 	edx_ace.message

 	edx_ace.monitoring

 	edx_ace.policy

 	edx_ace.presentation

 	edx_ace.recipient

 	edx_ace.recipient_resolver

 	edx_ace.renderers

 	edx_ace.serialization

 	edx_ace.test_utils

 	edx_ace.utils

 	edx_ace.utils.date

 	edx_ace.utils.once

 	edx_ace.utils.plugins

N

 	
 	NAME (edx_ace.message.MessageType attribute)

 	(edx_ace.MessageType attribute)

O

 	
 	once() (in module edx_ace.utils.once)

 	
 	overrides_delivery_for_message() (edx_ace.Channel method)

 	(edx_ace.channel.Channel method)

P

 	
 	patch_policies() (in module edx_ace.test_utils)

 	personalize() (edx_ace.message.MessageType method)

 	(edx_ace.MessageType method)

 	policies() (in module edx_ace.policy)

 	Policy (class in edx_ace)

 	(class in edx_ace.policy)

 	
 	PolicyResult (class in edx_ace)

 	(class in edx_ace.policy)

 	process() (edx_ace.message.MessageLoggingAdapter method)

 	PUSH (edx_ace.channel.ChannelType attribute)

 	(edx_ace.ChannelType attribute)

R

 	
 	RATE_LIMIT (edx_ace.channel.sailthru.RecoverableErrorCodes attribute)

 	RATE_LIMIT_REMAINING (edx_ace.channel.sailthru.ResponseHeaders attribute)

 	RATE_LIMIT_RESET (edx_ace.channel.sailthru.ResponseHeaders attribute)

 	Recipient (class in edx_ace)

 	(class in edx_ace.recipient)

 	RecipientResolver (class in edx_ace)

 	(class in edx_ace.recipient_resolver)

 	RecoverableChannelDeliveryError

 	RecoverableErrorCodes (class in edx_ace.channel.sailthru)

 	register_channel() (edx_ace.channel.ChannelMap method)

 	render() (edx_ace.renderers.AbstractRenderer method)

 	(in module edx_ace.presentation)

 	
 	rendered_message_cls (edx_ace.renderers.AbstractRenderer attribute)

 	(edx_ace.renderers.EmailRenderer attribute)

 	RenderedEmail (class in edx_ace.renderers)

 	report() (edx_ace.Message method)

 	(edx_ace.message.Message method)

 	(in module edx_ace.monitoring)

 	report_basics() (edx_ace.Message method)

 	(edx_ace.message.Message method)

 	report_to_newrelic() (in module edx_ace.monitoring)

 	ResponseHeaders (class in edx_ace.channel.sailthru)

S

 	
 	SailthruEmailChannel (class in edx_ace.channel.sailthru)

 	send() (edx_ace.recipient_resolver.RecipientResolver method)

 	(edx_ace.RecipientResolver method)

 	(in module edx_ace)

 	(in module edx_ace.ace)

 	
 	serialize() (in module edx_ace.utils.date)

 	StubPolicy (class in edx_ace.test_utils)

T

 	
 	to_json() (edx_ace.serialization.MessageAttributeSerializationMixin method)

 	
 	tracker_image_sources (edx_ace.channel.sailthru.SailthruEmailChannel property)

U

 	
 	unique_name (edx_ace.Message property)

 	(edx_ace.message.Message property)

 	
 	UnsupportedChannelError

 nav.xhtml

 Table of Contents

 		
 edX Automated Communication Engine (A.C.E.)

 		
 Getting Started

 		
 Install dependencies

 		
 Configure delivery channels

 		
 SailthruEmailChannel Settings

 		
 DjangoEmailChannel Settings

 		
 Create a message

 		
 Transactional messages

 		
 Send a message

 		
 Design

 		
 Overview

 		
 Goals/Constraints

 		
 Architecture

 		
 Decisions

 		
 Braze Event Delivery

 		
 Testing

 		
 API Documentation

 		
 Basic Interface

 		
 Sending Messages

 		
 Delivery

 		
 edx_ace.channel.sailthru

 		
 edx_ace.channel.django_email

 		
 Exceptions

 		
 Messages

 		
 Monitoring

 		
 Delivery Policy

 		
 Message Presentation

 		
 Message Recipients

 		
 Serialization

 		
 Utils

 		
 edx_ace.utils

 		
 edx_ace.utils.date

 		
 edx_ace.utils.once

 		
 edx_ace.utils.plugins

 		
 Testing

 		
 edx_ace.test_utils

 		
 Internal

 		
 Delivery

 		
 Change Log

 		
 Unreleased

 		
 [1.5.0] - 2022-02-15

 		
 [1.4.1] - 2021-12-06

 		
 [1.4.0] - 2021-11-08

 		
 [1.3.1] - 2021-08-17

 		
 [1.3.0] - 2021-08-16

 		
 [1.2.0] - 2021-07-16

 		
 [1.1.1] - 2021-07-09

 		
 [1.1.0] - 2021-03-26

 		
 [1.0.1] - 2021-03-15

 		
 [1.0.0] - 2021-03-11

 		
 [0.1.18] - 2020-11-19

 		
 [0.1.17] - 2020-10-19

 		
 [0.1.16] - 2020-10-17

 		
 [0.1.15] - 2020-03-11

 		
 [0.1.14] - 2020-03-11

 		
 [0.1.13] - 2019-12-06

 		
 [0.1.12] - 2019-10-16

 		
 [0.1.10] - 2018-11-01

 		
 [0.1.9] - 2018-07-13

 		
 [0.1.0] - 2017-08-08

 		
 Added

_static/minus.png

_static/plus.png

_static/file.png

_images/architecture.png
"Decides when to send the message and to whom.
This can be based on an external event (like a
- completed transaction) or a schedule. It can send |

/ Ito a particular user, or identify a group of users to |
/ targel

Compositon F° e e e — —
Given a group of users to target, or an individual

user, fetch all of the data needed to render a

| personalized message for each user. Build a |
/ IMessage object for each message and call |
I_ace.send(message).

Recipient /
Resolution

TGiven a generic template and user-specific data,
render a complete user-specific version of the

|message This is where translation happens and
Policy whlte label overrides are applied.
L e _ " -
Enforcement /
: /
/
_____________ | / Email
leen user preferences, figure out which channels / — Presentation L
the message should be sent over. The user may
g . . /
| have chosen to opt-out of messaging for certain F
Icourses. for example. That preference would be |
enforced here.
L e e —— =]
. Delivery Push

_———— ———————— — In-Browser

"Send the message to the user over the appropnate /
channels. +

